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Set operations and logical connectives

~(PVQ)=(=P)N(-Q)
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Axioms

B (PAQ)—P
H(QAP)—P
P—(PVQ)
P—(QVP)

B —P—-P

3 F—(Q—P)
P—(Q— (PAQ))

B ((P—>QA(P=-Q)) =P
@ ((P=RIA(Q=R) = ((PVQ)~R)
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Axioms

(PAQ)— P

(QAP)— P

P—(PVQ) Rule of inference
aPr—(QVP) P, P—Q
B —P—P Q

APrP—(Q—P)
P—(Q—(PAQ))
B ((P— QA (P—-Q) — P

@ ((P=RIA(Q=R) = ((PVQ)~R)
[[:(P—>Q (P = ( Q—>R)))—>(P—>R)



Example: derive (AV B) — (B V A)

1. Axiom P — (PV Q): B — (BV A)

2. Axiom P - (QV P): A— (BVA)

3. Axiom P — (Q = (P A Q)):
(A= BV A) — ((B—>B\/A)—> (A= BVA)A(B—
BV A))

4. Steps 2 and 3:
(B— BVA)—= (A= BVA)A(B— BVA))

5. Stepsland 4. (A— BVA)A(B— BVA)

6. Axiom ((P—>R)A(Q—>R)> = ((P\/Q)—>R>:
((A—> B\/A)/\(B—>B\/A)> = ((A\/B)—>(B\/A))

7. Steps 5and 6: (AVB)— (BVA)
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Subset interpretation

Let X be a set.
Logical connectives are interpreted as operations on subsets of X:

m conjunction A — as intersection N

m disjunction V — as union U

® negation = — as complement
(P=Q)=((-P)VvQ), (P-Q)=({(P—=QA(Q—P))
Given a mapping from propositional variables (P, Q, etc.) to
subsets of X, every formula is mapped to a subset X.
e.g. PAQ — PNQ

PV =P — PUP=X

Some formulas are always mapped to the whole set X. They are
called valid with respect to interpretation in X.
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Soundness and completeness

Theorem. Let X be a set.

All tautologies (= derivable formulas) of the classical logic are
valid with respect to interpretation in X. The classical logic is
sound with respect to this interpretation.

If X is non-empty, the tautologies (= derivable formulas) of
the classical logic are the only formulas valid with respect to
interpretation in X. The classical logic is complete with
respect to this interpretation.

The language of classical logic does not distinguish different
non-empty sets X.



Topological spaces

Definition. A topological space is a set X together with a
collection of subsets of X, called open subsets, satisfying the
following axioms:

m The empty subset and X are open.
m The union of any collection of open subsets is also open.

m The intersection of any pair of open subsets is also open.



Topological spaces

Definition. A topological space is a set X together with a
collection of subsets of X, called open subsets, satisfying the
following axioms:

m The empty subset and X are open.
m The union of any collection of open subsets is also open.
m The intersection of any pair of open subsets is also open.

Example. X =R". A subset P of X is open iff for any point x in
P, some open ball containing x is contained in P.

7
R: —o0 O—O R2 : \\~~\‘/\
-/\/\//
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Topological spaces

Definition. The complement of an open subset is called closed.

Definition. Given a subset P of X, the interior of P is the largest
open subset of P.

Example. X =R, P =|a,b], interior(P) = (a,b).

Definition. Let X and Y be topological spaces. Then f: X = Y
is continuous if for any open subset U of Y, f~1(U) is an open
subset of X.
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Quantifiers

m “Vx" means “for all x”

B “Ix" means ‘“there exists x"
Example. Let P be a subset of R2. Then
Vxe P3dreR ((r >0)AVy € Rz(dist(x,y) <r—ye P))

means that P is open.

The language with quantifiers is very expressive but undecidable.



Compromise: modality

The classical logic is extended with an operator O.
Interpretations of OP:

P is known

P is provable

P is computable

P is necessary

P will always be true

P will be true tomorrow

etc.



Axioms of classical logic
oP — P

opP — OOP

OP — Q) — (OP - 0OQ)
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m Axioms of classical logic

s OP 5 P Rules of inference

= OP — 0O0OP P, P—Q P
= O(P = Q) — (OP — 0Q) Q " Hp

Topological interpretation of O:

OP = interior(P)



S4: A, V, 0, —, <, O

m Axioms of classical logic

s OP 5 P Rules of inference
= OP — DOOP P, P—Q andi
m O(P—=Q)— (OP—=0Q) Q opP

Topological interpretation of O:
OP = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with
respect to interpretation in X.



Theorem. S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following
statements are equivalent:

F is derivable in S4

F is valid in each interpretation (for each topological space X)



Theorem. S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following
statements are equivalent:

F is derivable in S4

F is valid in each interpretation (for each topological space X)

F is valid in each interpretation for each R”



Theorem. S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following
statements are equivalent:

F is derivable in S4

F is valid in each interpretation (for each topological space X)

F is valid in each interpretation for each R”

F is valid in each interpretation for some R”



Theorem. S4 is complete with respect to all interpretations in all
topological spaces X, i.e. for any formula F, the following
statements are equivalent:

F is derivable in S4

F is valid in each interpretation (for each topological space X)

F is valid in each interpretation for each R”

F is valid in each interpretation for some R”

Corollary. The modal logic (with operations A, V, =, —, O) does
not distinguish R"'s for different n.



Problem

Start with a subset S of R.



Problem

Start with a subset S of R. Consider the following sequences:



Problem

Start with a subset S of R. Consider the following sequences:

S



Problem

Start with a subset S of R. Consider the following sequences:

S
inter(S)



Problem

Start with a subset S of R. Consider the following sequences:

S
inter(S)
compl(inter(S))



Problem

Start with a subset S of R. Consider the following sequences:

S

inter(S)
compl(inter(S))
inter(compl(inter(S)))



Problem

Start with a subset S of R. Consider the following sequences:

S

inter(S)
compl(inter(S))
inter(compl(inter(S)))



Problem

Start with a subset S of R. Consider the following sequences:

S compl(S)
inter(S)

compl(inter(S))

inter(compl(inter(S)))



Problem

Start with a subset S of R. Consider the following sequences:

S compl(S)
inter(S) inter(compl(S))
compl(inter(S))

inter(compl(inter(S)))



Problem

Start with a subset S of R. Consider the following sequences:

S compl(S)
inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))

inter(compl(inter(S)))



Problem

Start with a subset S of R. Consider the following sequences:

S

inter(S)
compl(inter(S))
inter(compl(inter(S)))

compl(S)

inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))



Problem

Start with a subset S of R. Consider the following sequences:

S

inter(S)
compl(inter(S))
inter(compl(inter(S)))

compl(S)

inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))



Problem

Start with a subset S of R. Consider the following sequences:

S compl(S)

inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))
inter(compl(inter(S))) inter(compl(inter(compl(5))))

Can there be infinitely many different sets in these sequences?



Problem

Start with a subset S of R. Consider the following sequences:

S compl(S)

inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))
inter(compl(inter(S))) inter(compl(inter(compl(5))))

Can there be infinitely many different sets in these sequences?

If not, what is the maximum number of different sets?
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———0— complement —o0— —@—
e

J interior
 —
J complement
— e —

J interior
— o
J complement
e oo

Get 6 different subsets of R
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Example 3

———0—e—— complement —o — @—0—
—_

J interior J interior
—O——— 0 O—O—
J complement J complement
—e  0— S e——e o
J interior
0 O—

J complement
- — e



Example 3

———0—e—— complement —o — @—0—
—_

J interior J interior
—O——— 0 O—O—
J complement J complement
e ———— - —e e

J interior
_— O
J complement
e o———o

Get 8 different subsets of R
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Problem

Can there be infinitely many different sets?
Answer: No.

What is the largest possible number of different sets?
Answer: 14.

Proof that we cannot get more than 14.

Lemma. There are at most 7 different sets in the sequence
S
inter(S)
compl(inter(S))
inter(compl(inter(S)))

because

inter(compl(inter(compl(inter(compl(inter(S))))))) =
inter(compl(inter(5)).
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Proof

Lemma. D—||:|—||:]—|DS = D—|DS
Proof. Let T = —S, then S =-T. We want to prove:
O-0-0-0-T = 0-0-T.

Notation: OR = —-0O-R.
In the topological interpretation “OGR” means “the closure of R".

Want to prove: OOCOCT =00 T.

Proof of OCT — OOOCT.  Axiom: OP — P
Let P = =R, then O-R — =R

Contrapositive: R — -0-R

Let R=0Q, then OQ — —-0-0Q

ie. OQR — <O

Apply O: 00Q — 000Q

Axiom: OQ — 00OQ

Therefore OQ — OCOQ

Let Q =T, then OOT — OCOCT.



Proof

Lemma. D_|D_|D_|DS = D—|DS
Proof. Let T = —S, then S =-T. We want to prove:
O-0-0-0-T = 0-0-T.

Notation: OR = —-0O-R.
In the topological interpretation “OGR” means “the closure of R".

Want to prove: OOCOCT =00 T.
Proof of OCT — OOOCT.  Axiom: OP — P
Let P = =R, then O-R — =R
Contrapositive: R — -0-R

Let R=0Q, then OQ — —-0-0Q
ie. OQR — <O

Apply O: 00Q — 000Q

Axiom: OQ — 00OQ

Therefore OQ — OCOQ

Let Q =T, then OOT — OCOCT.
Similarly O00COCT — OOT.



Proof

Similarly, there are at most 7 different subsets in the sequence
compl(S)
inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))

because

inter(compl(inter(compl(inter(compl(inter(compl(S5)))))))) =
inter(compl(inter(compl(5))),

so at most 14 different subsets total.



Proof

Similarly, there are at most 7 different subsets in the sequence
compl(S)
inter(compl(S))
compl(inter(compl(S)))
inter(compl(inter(compl(S))))

because

inter(compl(inter(compl(inter(compl(inter(compl(S5)))))))) =
inter(compl(inter(compl(5))),

so at most 14 different subsets total.

Homework problem. Find a subset of R for which you get 14
different subsets.
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Dynamic topological systems

Definition. A dynamic topological system is a topological space
X with a continuous function f: X — X.
New modal operator O: OP is interpreted as f ~1(P).

S4C

Axioms of classical logic

oP - P Rules of inference

opP — 0OOP P. P Q

OP - Q) — (OP — OQ) (1) 0

O(P = Q) — (OP — 0Q)

(O=P) < (mOP) (2) — (3) —
(OOP) + (OO OP)
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F is valid with respect to every interpretation in every
topological space

F is valid with respect to every interpretation in every R"



Theorem. Let F be a formula. The following are equivalent:
F is derivable in S4C

F is valid with respect to every interpretation in every
topological space

F is valid with respect to every interpretation in every R"

However, the above statements are not equivalent to

4. F is valid with respect to every interpretation in R



Theorem. Let F be a formula. The following are equivalent:
F is derivable in S4C

F is valid with respect to every interpretation in every
topological space

F is valid with respect to every interpretation in every R"

However, the above statements are not equivalent to

4. F is valid with respect to every interpretation in R

Namely, there exists a formula that is valid in R but not valid in
any R” with n > 1.



Theorem. Let F be a formula. The following are equivalent:
F is derivable in S4C

F is valid with respect to every interpretation in every
topological space

F is valid with respect to every interpretation in every R"

However, the above statements are not equivalent to

4. F is valid with respect to every interpretation in R

Namely, there exists a formula that is valid in R but not valid in
any R” with n > 1.

Corollary. The language of S4C distinguishes R from R" for
n>1.
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Let U=0P (U is open),
o= (O ) (O=U) (@ is the boundary of U),
W= (00 ®) A (0Q) A (S0 -Q).



Example

Let U=0P (U is open),
® = (QU) A (O=U) (P is the boundary of U),
V=(0O0P)A(OQ)A(CO-Q).

Lemma. If P and Q are subsets of R, then W = ().



Example

Let U=0P (U is open),
® = (QU) A (O=U) (P is the boundary of U),
V=(0O0P)A(OQ)A(CO-Q).

Lemma. If P and Q are subsets of R, then W = ().
Corollary. -V =R



Example

Let U=0P (U is open),
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Example

Let U=0P (U is open),
® = (QU) A (O=U) (P is the boundary of U),
V=(00®P)A(0Q)A(CO-Q).

Lemma. If P and Q are subsets of R, then W = ().

Corollary. -V =R

Lemma. There exist subsets P and Q of R? and a continuous
function f: R? — R? such that W # (), i.e. =W # R?,

Corollary. The formula =W is not derivable in S4C.



Theorem

(joint work with A. Nogin; also by D.F. Duque)

For any n > 2, S4C is complete with respect to any interpretation
in R".



Dimension 1

(joint work with A. Nogin)

The following formulas are valid with respect to any interpretation
in R:

OQAO(OQRANOC-PAOOP) = O(O0-QACO-PASOOP)

OPAO-QAQCOOPACO(RPAQ)ADOS —
S(COOPAOO-PAODS)



Dimension 1

(joint work with A. Nogin)

The following formulas are valid with respect to any interpretation
in R:

OQAO(OQRANOC-PAOOP) = O(O0-QACO-PASOOP)
OPAO-QAQCOOPACO(RPAQ)ADOS —
S(COOPAOO-PAODS)

Open question

What exactly is the dynamic topological logic of R?
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Application: Hybrid Control Systems

m “Discrete” parameters: Discrete Mathematics

m “Continuous” parameters: Optimal Control Theory:
Differential Equations, PDEs, etc

m Parameters of both types: Hybrid Control System:
Modal Logic

(SN
I\% CADILLAC DEVELOPING “SUPER CRUISE”

“Super Cruise” does full-speed range adaptive cruise control and
lane centering, using cameras and other sensors to automatically
steer and brake in highway driving.
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Thank you!
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