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Set operations and logical connectives

P ∪ Q = P ∩ Q ¬(P ∨ Q) ≡ (¬P) ∧ (¬Q)

P = P ¬¬P ≡ P

P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
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Axioms

1 (P ∧ Q)→ P

2 (Q ∧ P)→ P

3 P → (P ∨ Q)

4 P → (Q ∨ P)

5 ¬¬P → P

6 P → (Q → P)

7 P → (Q → (P ∧ Q))

8

(
(P → Q) ∧ (P → ¬Q)

)
→ ¬P

9

(
(P → R) ∧ (Q → R)

)
→

(
(P ∨ Q)→ R

)
10

(
(P → Q) ∧

(
P → (Q → R)

))
→ (P → R)

Rule of inference

P, P → Q

Q
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Example: derive (A ∨ B)→ (B ∨ A)

1. Axiom P → (P ∨ Q): B → (B ∨ A)

2. Axiom P → (Q ∨ P): A→ (B ∨ A)

3. Axiom P →
(
Q → (P ∧ Q)

)
:

(A→ B ∨ A)→
(

(B → B ∨ A)→
(
(A→ B ∨ A) ∧ (B →

B ∨ A)
))

4. Steps 2 and 3:
(B → B ∨ A)→

(
(A→ B ∨ A) ∧ (B → B ∨ A)

)
5. Steps 1 and 4: (A→ B ∨ A) ∧ (B → B ∨ A)

6. Axiom
(

(P → R) ∧ (Q → R)
)
→

(
(P ∨ Q)→ R

)
:(

(A→ B ∨ A) ∧ (B → B ∨ A)
)
→

(
(A ∨ B)→ (B ∨ A)

)
7. Steps 5 and 6: (A ∨ B)→ (B ∨ A)



Subset interpretation

Let X be a set.
Logical connectives are interpreted as operations on subsets of X :

conjunction ∧ – as intersection ∩
disjunction ∨ – as union ∪
negation ¬ – as complement

(P → Q) ≡ ((¬P) ∨ Q) , (P ↔ Q) ≡ ((P → Q) ∧ (Q → P))

Given a mapping from propositional variables (P, Q, etc.) to
subsets of X , every formula is mapped to a subset X .
e.g. P ∧ Q 7→ P ∩ Q

P ∨ ¬P 7→ P ∪ P

= X

Some formulas are always mapped to the whole set X . They are
called valid with respect to interpretation in X .
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Soundness and completeness

Theorem. Let X be a set.

1 All tautologies (= derivable formulas) of the classical logic are
valid with respect to interpretation in X .

The classical logic is
sound with respect to this interpretation.

2 If X is non-empty, the tautologies (= derivable formulas) of
the classical logic are the only formulas valid with respect to
interpretation in X . The classical logic is complete with
respect to this interpretation.

The language of classical logic does not distinguish different
non-empty sets X .
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Topological spaces

Definition. A topological space is a set X together with a
collection of subsets of X , called open subsets, satisfying the
following axioms:

The empty subset and X are open.

The union of any collection of open subsets is also open.

The intersection of any pair of open subsets is also open.

Example. X = Rn. A subset P of X is open iff for any point x in
P, some open ball containing x is contained in P.

R : R2 :
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Topological spaces

Definition. The complement of an open subset is called closed.

Definition. Given a subset P of X , the interior of P is the largest
open subset of P.

Example. X = R, P = [a, b], interior(P) = (a, b).

Definition. Let X and Y be topological spaces. Then f : X → Y
is continuous if for any open subset U of Y , f −1(U) is an open
subset of X .
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Quantifiers

“∀x” means “for all x”

“∃x” means “there exists x”

Example. Let P be a subset of R2. Then

∀x ∈ P ∃r ∈ R
(

(r > 0) ∧ ∀y ∈ R2
(
dist(x , y) < r → y ∈ P

))
means that P is open.

The language with quantifiers is very expressive but undecidable.
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Compromise: modality

The classical logic is extended with an operator 2.
Interpretations of 2P:

P is known

P is provable

P is computable

P is necessary

P will always be true

P will be true tomorrow

etc.



S4: ∧, ∨, ¬, →, ↔, 2

Axioms of classical logic

2P → P

2P → 22P

2(P → Q)→ (2P → 2Q)

Rules of inference

P, P → Q

Q
and

P

2P

Topological interpretation of 2:
2P = interior(P)

Theorem. Let X be a topological space. Then S4 is sound with
respect to interpretation in X .
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Theorem. S4 is complete with respect to all interpretations in all
topological spaces X , i.e. for any formula F , the following
statements are equivalent:

1 F is derivable in S4

2 F is valid in each interpretation (for each topological space X )

3 F is valid in each interpretation for each Rn

4 F is valid in each interpretation for some Rn

Corollary. The modal logic (with operations ∧, ∨, ¬, →, 2) does
not distinguish Rn’s for different n.
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Problem

Start with a subset S of R.

Consider the following sequences:

S compl(S)
inter(S) inter(compl(S))
compl(inter(S)) compl(inter(compl(S)))
inter(compl(inter(S))) inter(compl(inter(compl(S))))
...

...

Can there be infinitely many different sets in these sequences?

If not, what is the maximum number of different sets?
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Can there be infinitely many different sets?

Answer: No.

What is the largest possible number of different sets?
Answer: 14.

Proof that we cannot get more than 14.
Lemma. There are at most 7 different sets in the sequence
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because

inter(compl(inter(compl(inter(compl(inter(S))))))) =
inter(compl(inter(S)).
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Proof

Lemma. 2¬2¬2¬2S = 2¬2S

Proof. Let T = ¬S , then S = ¬T . We want to prove:
2¬2¬2¬2¬T = 2¬2¬T .

Notation: 3R ≡ ¬2¬R.
In the topological interpretation “3R” means “the closure of R”.

Want to prove: 2323T ≡ 23T .
Proof of 23T → 2323T . Axiom: 2P → P
Let P = ¬R, then 2¬R → ¬R
Contrapositive: R → ¬2¬R
Let R = 2Q, then 2Q → ¬2¬2Q
i.e. 2Q → 32Q
Apply 2: 22Q → 232Q
Axiom: 2Q → 22Q
Therefore 2Q → 232Q
Let Q = 3T , then 23T → 2323T .

Similarly 2323T → 23T .
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Dynamic topological systems

Definition. A dynamic topological system is a topological space
X with a continuous function f : X → X .

New modal operator #: #P is interpreted as f −1(P).

S4C

Axioms of classical logic

2P → P

2P → 22P

2(P → Q)→ (2P → 2Q)

#(P → Q)→ (#P → #Q)

(#¬P)↔ (¬# P)

(#2P)↔ (2 # 2P)

Rules of inference

(1)
P, P → Q

Q

(2)
P

2P
(3)

P

#P
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Theorem. Let F be a formula. The following are equivalent:

1 F is derivable in S4C

2 F is valid with respect to every interpretation in every
topological space

3 F is valid with respect to every interpretation in every Rn

However, the above statements are not equivalent to

4. F is valid with respect to every interpretation in R

Namely, there exists a formula that is valid in R but not valid in
any Rn with n > 1.

Corollary. The language of S4C distinguishes R from Rn for
n > 1.
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Example

Let U = 2P (U is open),
Φ = (3U) ∧ (3¬U) (Φ is the boundary of U),

Ψ = (2 # Φ) ∧ (#Q) ∧ (3 # ¬Q).

Lemma. If P and Q are subsets of R, then Ψ = ∅.

Corollary. ¬Ψ = R

Lemma. There exist subsets P and Q of R2 and a continuous
function f : R2 → R2 such that Ψ 6= ∅, i.e. ¬Ψ 6= R2.

Corollary. The formula ¬Ψ is not derivable in S4C.
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Theorem

(joint work with A. Nogin; also by D.F. Duque)

For any n ≥ 2, S4C is complete with respect to any interpretation
in Rn.



Dimension 1

(joint work with A. Nogin)

The following formulas are valid with respect to any interpretation
in R:

#Q ∧3(#¬Q ∧#3¬P ∧2#P)→ 3(#¬Q ∧3#¬P ∧32#P)

#¬P ∧#¬Q ∧32 # P ∧3 # (¬P ∧ Q) ∧2 # S →
3(32 # P ∧3 # ¬P ∧#2S)

Open question

What exactly is the dynamic topological logic of R?
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Application: Hybrid Control Systems

“Discrete” parameters: Discrete Mathematics

“Continuous” parameters: Optimal Control Theory:
Differential Equations, PDEs, etc

Parameters of both types: Hybrid Control System:
Modal Logic
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Thank you!


	Preliminaries
	Set operations and logical connectives
	Topological spaces

	Modal logics
	New operator and axioms
	Topological interpretation: ``interior''
	Problem

	Dynamic topological systems
	Definition
	``Preimage'' operator and new axioms
	Results and open questions
	Applications


