Section 5.5. Alternating Series.

Examples.
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Exercises. Determine whether each of the following series converges abso-
lutely, converges conditionally, or diverges.
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Section 5.6. Ratio and Root Tests.

Examples.

(0.8}
2n
1. The series E — converges by the ratio test since
n!
n=1

2n+1 2
(n+1)! .
— =1 = 0.
Z ik nt1

Qp+1
Qp

= lim
n—oo

p = lim
n—o0

(0.9]
1
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Exercises. Can the ratio and/or root test be used to determine conver-
gence/divergence of the following series?
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Solution. The ratio test can be used. The limit is infinite, so the series
diverges.
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Solution. If the ratio test is used, the limit is 1, so the test is inconclusive.
The limit does not seem to be simple enough for the root test. (Note:
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series diverges.)
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Solution. The root test can be used. The limit is 0, so the series converges.



Section 6.1. Power Series and Functions.

Examples. For 1-3, ind the radius and interval of convergence for each
series.

4. Use a power series to represent and find its interval of convergence.
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Exercises. (Note: we did not actually have time in class to do these.)
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1. Find the radius and interval of convergence for the series Z
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Solution. Using the ratio test, we have p = lim < = x. The
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series converges when |r| < 1 and diverges when |:1:| > 1, so the radius
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of convergence is 1. If x = 1, the series is Z \/_ and it diverges by
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converges by the alternating series test. Thus the interval of convergence
is [—1,1).
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2. Use a power series to represent and find its interval of convergence.
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Solution. See example 6.3 (b) in the book.



Section 6.3. Taylor and Maclaurin Series.

Examples.

1. Find the Taylor series of f(z) = Inz at a = 1. Graph the first seven
Taylor polynomials.

Solution. f(x) = (z —1) — (a:—21)2 n (x—31)3 B (x—41)4 n (w_51)5 B (x_Gl)s L
po(z) =0,
pi(z) =z —1,
po(x) = (z—1) — (x—21)27
ps(z) = (x — 1) — gtk 4
pa(x) = (x—1) — (‘”—2”2 T ($_31)3 _ ($—41)4’
ps() = (z— 1) = L 4 Ll Geln el
ps(z) = (1 — 1) — (»"0—21)2 + (37—31)3 _ (x—41)4 n (oc—51)5 (:C—61)6
2. Find the Maclaurin series of f(z) = e”.
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Exercises. (Note: we did not actually have time in class to do these.)
Find and graph the first four Maclaurin polynomials of

1. f(z) =sinx.
2. f(x) = cosz.

Solutions. See example 6.12 in the book.



Section 6.4. Working with Taylor and Series.

Examples.

1. Binomial series: (14 z)" <T)x =1+rz+ n +
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Exercises.

1. Write the third Maclaurin polynomial for v/1 + x.
Solution. See example 6.17 in the book.

2. Find the Maclaurin series for sin(2?).
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Solution. Since the Maclaurin series for sin(z) is nzo(—l)"m, the
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Maclaurin series for sin(z?) is Z(—l)”m = Z(—l)”m
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3. Use (tan'z) = to find the Maclaurin series for tan™ x.
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we have tan 'z = ¢ + Z(—l)”2n 1 Since arctan(0) = 0, we have
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