Triangle Centers

Maria Nogin

(based on joint work with Larry Cusick)

Junior Seminar in Pure Mathematics
California State University, Fresno
February 10, 2023

Outline

- Triangle Centers
- Well-known centers
\star Center of mass
\star Incenter
\star Circumcenter
\star Orthocenter
- Not so well-known centers (and Morley's theorem)
- More recently discovered centers
- Better coordinate systems
- Trilinear coordinates
- Barycentric coordinates
- So what qualifies as a triangle center?
- Open problems ($=$ possible projects)

Centroid (center of mass)

Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians.

Centroid (center of mass)

Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians.

Centroid (center of mass)

Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians.

Incenter

Three angle bisectors in every triangle are concurrent.
Incenter is the point of intersection of the three angle bisectors.

Circumcenter

Three side perpendicular bisectors in every triangle are concurrent. Circumcenter is the p\&int of intersection of the three side perpendicular bisectors.

Orthocenter

Three altitudes in every triangle are concurrent. Orthocenter is the point of intersection of the three altitudes.

Euler Line

Theorem (Euler, 1765). In any triangle, its centroid, circumcenter, and orthocenter are collinear.

Nine-point circle

The midpoints of sides, feet of altitudes, and midpoints of the line segments joining vertices with the orthocenter lie on a circle. Nine-point center is the center of this circle.

Euler Line

The nine-point center lies on the Euler line also!
It is exactly midway between the orthocenter and the circumcenter.

Morley's Theorem

Theorem (Morley, 1899). $\triangle P Q R$ is equilateral.
The centroid of $\triangle P Q R$ is called the first Morley center of $\triangle A B C$.

Classical concurrencies

The following line segments are concurrent:
$A P, B Q, C R$

Classical concurrencies

The following line segments are concurrent:
$A P, B Q, C R \quad A U, B V, C W$

Classical concurrencies

The following line segments are concurrent:
$A P, B Q, C R \quad A U, B V, C W$
$P U, Q V, R W$

New Concurrency I

Theorem (Cusick and Nogin). The following line segments are concurrent:
$A F, B G, C H$

New Concurrency II

Theorem (Cusick and Nogin). The following line segments are concurrent: $A F, B G, C H$ $P I, Q J, R K$

Trilinear Coordinates

Trilinear coordinates: triple $\left(t_{1}, t_{2}, t_{3}\right)$ such that $t_{1}: t_{2}: t_{3}=d_{a}: d_{b}: d_{c}$ e.g. $A(1,0,0), \quad B(0,1,0), \quad C(0,0,1)$

Barycentric Coordinates

Barycentric coordinates: triple $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ such that P is the center of mass of the system $\left\{\right.$ mass λ_{1} at A, mass λ_{2} at B, mass λ_{3} at $\left.C\right\}$, i.e. $\lambda_{1} \vec{A}+\lambda_{2} \vec{B}+\lambda_{3} \vec{C}=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \vec{P}$ $\lambda_{1}: \lambda_{2}: \lambda_{3}=\operatorname{Area}(P B C): \operatorname{Area}(P A C): \operatorname{Area}(P A B)$

Trilinears vs. Barycentrics

Trilinears: $t_{1}: t_{2}: t_{3}=d_{a}: d_{b}: d_{c}$
Barycentrics: $\lambda_{1}: \lambda_{2}: \lambda_{3}=\operatorname{Area}(P B C): \operatorname{Area}(P A C): \operatorname{Area}(P A B)$

$$
\begin{aligned}
& =a d_{a}: b d_{b}: c d_{c} \\
& =a t_{1}: b t_{2}: c t_{3}
\end{aligned}
$$

Centroid (center of mass)

Trilinear coordinates: $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}$ Barycentric coordinates: 1:1:1

Incenter

Trilinear coordinates: 1:1:1
Barycentric coordinates: $a: b: c$

Circumcenter

Orthocenter

Trilinear coordinates: $\sec (A): \sec (B): \sec (C)$
Barycentric coordinates: $\tan (A): \tan (B): \tan (C)$

What is a triangle center?

A point P is a triangle center if it has a trilinear representation of the form

$$
f(a, b, c): f(b, c, a): f(c, a, b)
$$

such that $f(a, b, c)=f(a, c, b)$
(such coordinates are called homogeneous in the variables a, b, c).

Open problems (= possible projects)

1. Find the trilinear or barycentric coordinates of both points of concurrency:

2. Are these points same as some known triangle centers?

Open problems (= possible projects)

3. Find an elementary geometry proof of this concurrency:

4. Any other concurrencies?

Open problems (= possible projects)

5. Which of the known triangle centers can be generalized to 3 D and/or higher dimensions?

Thank you!

